Assertion criteria for genetic sequence variant classification Hemoglobin and Genome Lab (HGL-Hemocentro) Last update: July 2017 (Kleber Y. Fertrin, Marina D. Borges) The Hemoglobin and Genome Lab – Hemocentro Campinas classifies sequencing variants following the guidelines of the ACMG Laboratory Practice Committee Working Group (Richards et al., 2015. Genet Med. 2015 May;17(5):405-23). These guidelines represent a basic framework for interpretation of sequence variants. Each variant is individually assessed in the context of the variant, gene, associated disease and patient phenotype. Sequence variants are classified in one of five categories: pathogenic, likely pathogenic, benign, likely benign, and uncertain significance. The following applies to variants in genes associated with specific phenotypes. ## 1- Use the following framework for the definition of criteria according to type of evidence: | | ← Benign ← | | Pathogenic | | | | |---|--|---|---|---|---|---| | | Strong | Supporting | Supporting | Moderate | Strong | Very strong | | Population
data | MAF is too high for
disorder BA1/BS1 OR
observation in controls
inconsistent with
disease penetrance BS2 | | | Absent in population databases PM2 | Prevalence in
affecteds statistically
increased over
controls PS4 | | | Computational
and predictive
data | | Multiple lines of computational evidence suggest no impact on gene //gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3 | Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3 | Novel missense change
at an amino acid residue
where a different
pathogenic missense
change has been seen
before PM5
Protein length changing
variant PM4 | Same amino acid
change as an
established
pathogenic variant
PS1 | Predicted null
variant in a gene
where LOF is a
known
mechanism of
disease
PVS1 | | Functional
data | Well-established
functional studies show
no deleterious effect
BS3 | | Missense in gene with
low rate of benign
missense variants and
path. missenses
common PP2 | Mutational hot spot
or well-studied
functional domain
without benign
variation PM1 | Well-established
functional studies
show a deleterious
effect PS3 | | | Segregation
data | Nonsegregation with disease BS4 | | Cosegregation with disease in multiple affected family members PP1 | Increased segregation data | → | | | De novo
data | | | | De novo (without paternity & maternity confirmed) PM6 | De novo (paternity and
maternity confirmed)
PS2 | | | Allelic data | | Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2 | | For recessive
disorders, detected
in trans with a
pathogenic variant
PM3 | | | | Other
database | | Reputable source w/out
shared data = benign BP6 | Reputable source
= pathogenic PP5 | | | | | Other data | | Found in case with
an alternate cause
BP5 | Patient's phenotype or
FH highly specific for
gene PP4 | | | | ## 2- Classify sequence variants according to the rules below: | Pathogenic | 1 Very strong (PVS1) <i>AND</i> | | | | |-------------------|--|--|--|--| | | (a) ≥1 Strong (PS1–PS4) <i>OR</i> | | | | | | (b) ≥2 Moderate (PM1–PM6) <i>OR</i> | | | | | | (c) 1 Moderate (PM1–PM6) and 1 supporting (PP1–PP5) <i>OR</i> | | | | | | (d) ≥2 Supporting (PP1–PP5) | | | | | | (ii) ≥2 Strong (PS1–PS4) <i>OR</i> | | | | | | (iii) 1 Strong (PS1–PS4) AND | | | | | | (a)≥3 Moderate (PM1–PM6) <i>OR</i> | | | | | | (b)2 Moderate (PM1–PM6) <i>AND</i> ≥2 Supporting (PP1–PP5) <i>OR</i> | | | | | | (c)1 Moderate (PM1–PM6) <i>AND</i> ≥4 supporting (PP1–PP5) | | | | | Likely pathogenic | (i) 1 Very strong (PVS1) AND 1 moderate (PM1–PM6) OR | | | | | | (ii) 1 Strong (PS1–PS4) AND 1–2 moderate (PM1–PM6) OR | | | | | | (iii) 1 Strong (PS1–PS4) AND ≥2 supporting (PP1–PP5) OR | | | | | | (iv) ≥3 Moderate (PM1–PM6) OR | | | | | | (v) 2 Moderate (PM1–PM6) AND ≥2 supporting (PP1–PP5) OR | | | | | | (vi) 1 Moderate (PM1–PM6) <i>AND</i> ≥4 supporting (PP1–PP5) | | | | | Benign | (i) 1 Stand-alone (BA1) OR | | | | | | (ii) ≥2 Strong (BS1–BS4) | | | | | Likely benign | (i) 1 Strong (BS1–BS4) and 1 supporting (BP1–BP7) <i>OR</i> | | | | | | (ii) ≥2 Supporting (BP1–BP7) | | | | | Uncertain | (i) Other criteria shown above are not met OR | | | | | significance | (ii) the criteria for benign and pathogenic are contradictory | | | |